Information-theoretic approach to quantum error correction and reversible measurement
نویسندگان
چکیده
Quantum operations provide a general description of the state changes allowed by quantum mechanics. The reversal of quantum operations is important for quantum error-correcting codes, teleportation, and reversing quantum measurements. We derive information-theoretic conditions and equivalent algebraic conditions that are necessary and sufficient for a general quantum operation to be reversible. We analyze the thermodynamic cost of error correction and show that error correction can be regarded as a kind of “Maxwell demon,” for which there is an entropy cost associated with information obtained from measurements performed during error correction. A prescription for thermodynamically efficient error correction is given. PACS numbers: 03.65.Bz Typeset using REVTEX ∗Electronic address: [email protected] †Electronic address: [email protected]
منابع مشابه
Logical Reversibility and Physical Reversibility in Quantum Measurement
A quantum measurement is logically reversible if the premeasurement density operator of the measured system can be calculated from the postmeasurement density operator and from the outcome of the measurement. This paper analyzes why many quantum measurements are logically irreversible, shows how to make them logically reversible, and discusses reversing measurement that returns the postmeasurem...
متن کاملReversible Logic Multipliers: Novel Low-cost Parity-Preserving Designs
Reversible logic is one of the new paradigms for power optimization that can be used instead of the current circuits. Moreover, the fault-tolerance capability in the form of error detection or error correction is a vital aspect for current processing systems. In this paper, as the multiplication is an important operation in computing systems, some novel reversible multiplier designs are propose...
متن کاملInformation-theoretic interpretation of quantum error-correcting codes
Quantum error-correcting codes are analyzed from an information-theoretic perspective centered on quantum conditional and mutual entropies. This approach parallels the description of classical error correction in Shannon theory, while clarifying the differences between classical and quantum codes. More specifically, it is shown how quantum information theory accounts for the fact that ‘‘redunda...
متن کاملBlock synchronization for quantum information
Locating the boundaries of consecutive blocks of quantum information is a fundamental building block for advanced quantum computation and quantum communication systems. We develop a coding theoretic method for properly locating boundaries of quantum information without relying on external synchronization when block synchronization is lost. The method also protects qubits from decoherence in a m...
متن کاملQuantum Error-Correction Codes on Abelian Groups
We prove a general form of bit flip formula for the quantum Fourier transform on finite abelian groups and use it to encode some general CSS codes on these groups.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1997